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U N C L A S S I F I E D

• Body Β (reference configuration/frame),  region ℰ.
Material points # ∈ Β.

• Deformation: a mapping & such that ' = & # .
• Displacement: ) # = & # − #.
• Deformation gradient: + # = ∇& # .
• Strain: there are many.

Eg. Infinitesimal strain, - = .
/ (∇) + ∇)

2).

- Elastic strain, inelastic strain.
- Total strain = elastic strain + inelastic strain, for certain strains.

• Stress: 
- Forces that tend to return the body to equilibrium when deformation 

occurs, i.e. no deformation means no stress. 
- The sum of the forces exerted on the body by its surrounding, i.e. surface 

integral of the external forces.

Stress and Strain
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• Constitutive laws: the relationship between stress and strain. 
- Hyperelasticity: ∃ potential function of which derivative with respect to 

elastic strain is stress as a result of Clausius-Duhem
(the second law of thermodynamics).

- Hypoelasticity: no such potential.
- Flow stress models (also called strength models): 

Stress that is required to deform the material plastically.  
Relates stress and plastic strain (and possibly other things
like plastic strain rates and temperature). 

- Equation of State: relates the equilibrium thermodynamic quantities like
volume, pressure, internal energy, entropy, temperature, 
etc.

- Elastic strain ~ volumetric
Plastic strain ~ non-volumetric or deviatoric.

Stress and Strain
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• Flow stress as a function of strain, strain rate, and temperature.
• Johnson-Cook

• Steinberg-Cochran-Guinan-Lund

• Mechanical Threshold Stress

Flow Stress Models
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• Specifies the flow stress as a function of strain, strain rate, and temperature.

• Applicable to a wide range of strain rate (from 1e-3/s to 1e+12/s). 

In the low strain-rate regime, based on thermal-activation of dislocations; 

at high strain-rate, uses D. Wallace�s theory of overdriven shocks in metals.

• Isotropic model without accounting for the loading history or microstructure.

• Modified Voce hardening law.

• Data needed for parameter fitting: split-Hopkinson pressure bar experiments 

( - 1e+4/s), quasi-static experiments (1e-3/s – 1/s).

• Insufficient data leads to the under-constrained parameters (total 11, usually 8 

are fitted).

• J. Plohr et al. “The PTW Parameterization

of Cerium,” WRL 45, Mar 2018.

Preston-Tonks-Wallace (PTW) Visco-Plasticity Model
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• Normalized (equivalent deviatoric) Stress as a function of normalized 
(equivalent deviatoric) strain and normalized temperature. 

• !" = !"(%&, '; ̇'/ ̇+), 
!" = -

./ , 1: shear modulus; %&=&/&3, &3: melt temperature.
– Stress – normalized by 2 x shear modulus (function of density and temperature). 
– Strain rate – normalized by ~ the debye frequency (equivalently the atomic vibration 

time).
– Temperature – normalized by melt temperature (function of density).

• Need models (or tables) for shear modulus and melt temperature 
1 4, & = 15 4 (1 − 8 &/&3)

15 4 : cold shear, i.e. shear modulus at zero temperature
• Need Equation of State 

– For thermodynamic consistency, &̇ = −Γ& :̇
: + :-

;< =̇>;<
?@

.

Preston-Tonks-Wallace (PTW) Visco-Plasticity Model
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• Normalized (equivalent deviatoric) Stress as a function of normalized 
(equivalent deviatoric) Strain and normalized Temperature. 

Preston-Tonks-Wallace (PTW) Visco-Plasticity Model
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• For higher strain rate, the flow stress is higher.
• For lower temperature, the flow stress is higher.

Preston-Tonks-Wallace (PTW) Visco-Plasticity Model
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• L. Burakovsky, J. N. Plohr, S. K. Sjue, and D. J. Luscher, “Thermoelasticity
Model for Cerium,” LA-UR-26990, 2017.

• Unified analytic melt-shear model to describe both the cold shear modulus 
and melting temperature as functions of density.

• Based on the experimental, low-pressure behavior and high-pressure one-
component plasma (OCP) theory. 

!" # = 1
2 +

!(
#(/* +

!+
#,- ,

!/0 # = (
+ +
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32/4 +
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354.

6 78 "(3)
6 78 3 = 2!" # + (

*,

6 78 /0(3)
6 78 3 = 2!/0 # + (

* .

Thermoelasticity Model
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• Cerium (atomic number: 58) has 7 allotropes.
• Critical point at around 2 GPa and 500 K.

• Phase transformation between ! and " : 

- Localization/delocalization of 4f electron.

- Big volume collapse: density (!) = 6.77 g/*+,, density (") = 8.16 g/*+,.
- Anomalous behavior of the bulk modulus -> wave profile.

Multi-Phase Equation of State for Cerium
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• ! " = ! "$ %
%&

'
( exp −6./ "0

1
( − "$0

1
( − 2345

64
"064 − "$064 ,

• 89 " = 89("9)( %%<)
1
(=>? @

A
−6./ "0

1
( − "90

1
( − 3.2 "0

4
( − "90

4
( −

2.D "0/ − "90/ − D
2 .E "0

'
( − "90

'
( .

• Parameters are fitted with the experimental data and quantum molecular 
dynamics (QMD) results.
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• Split-Hopkinson pressure bar test done at Russian Federal Nuclear Center 
for the annealed cerium samples prepared at LANL.

• 7 distinct temperature/strain rate settings.

Experimental Data for Cerium

Strain rate (/sec) Temperature (K) Number of tests

1 1000 293 3
2 3500 293 2
3 1000 333 2
4 3500 333 2
5 3500 373 2
6 1800 293 1
7 2500 373 1 
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• J. Plohr et al. “The PTW Parameterization of Cerium,” WRL 45, March 2018.
• Higher strain data is needed for determining the asymptotic behavior.

Parameter Fitting
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